

Learning with Robotics

February 27, 2023

PSMA- Phoenix STEM Military Academy

 Chicago Public Schools District 299 www.phoenixmilitary.org

Student Presenters: PSMA STEM Ambassadors
Andrea Apolinar (Grade 11)
Andrea Guajardo (Grade 11)
Guidance Henderson (Grade 10)
Marquita Jones- Assistant Principal

ESMAM PLTM Course OfferingS	
Engeering \& Computer Science Pathway	
Course Title	Grade Level
IED-Introduction to Engineering	Rising 9-11
POE-Principles of Engineering	$10-12$
Civil Engineering	$11-12$
Aerospace \& Engineering	$10-12$
Cybersecurity	$11-12$
Digital Electronics (SY23-24)	$11-12$
Vex V5 Robotics (Summer 23)	$10-12$
Computer Science Essentials or Mobile Applications $9-10$ (SY23-24)	

Aerospace Engineering

- VEX Satellite

- VEX Elevator

${ }^{*}=$ EdSystems
- Ocean Engineering
- Algebra 2
- Computer Science
- Aerospace Engineering
- Robotics (Coding)
- Circuits (Soldering)
- Meteorology
- Paleotempestology

Curie High School

First Illinois Team, FTC: 19646, Phoenix

- Dr. Katti (Mentor)
- Natorion Johnson (Student Leader)

- Student Led: Natorion asked Dr. Katti to start a robotics club
- Need Summer Paid Programs to learn to use tools and understand mechanical structures.
- Robotics inherently creates a melting pot of friends, cooperation, learning and fun.
- Robotics builds people, not just robots!
- Robotics enables thinking and creativity!

Competition:

- First Illinois
- FTC
- Everyone is Invited
- Artists
- Graphic Design
- Communicators for fundraising.
- Organizers
- Builders
- Programmers
- CAD Designers

FTC Robots
First Iteration Robot-BB1

FTC- Curie Ready to Score! Competition

SHIFTING CHICAGO NARRATIVES
https://vimeo.com/701910232/b645872e63
$\underline{\underline{V}} \underline{\underline{E}}$ EdSystems

Building, Collaboration and Troubleshooting*

How to Install a Wheel on an Axle

How to use Gears
How to connect a motor

How to lift, turn and rotate

YouTube is your Friend

Strategize, Program, Iterate*

Programing Robot

- Turn the motors Forward and Backwards
- Adjust the Speed
- Program a Servo to turn
- Link Motors to Sensors

Strategize

- Understand the rules
- How to play
- Understand what to document

Presentation to Judges

Oral

- Design Approach
- Problems Encountered
- Redesign
- Uniqueness

Written

- Document Daily Work
- Draw Illustrations
- Outreach Outcome
- Social Media/Website
- Fund Raising

Gracious Professionalism

... Strong competition ... mutual respect ... appreciation of your opponents.
**Giving back to assist your competitors produce their highest quality work

- When your opponent has a bent hub, you give them a hub you have and they win state! It's our win too.
- When a team forgets to bring the wires you need, you give them a wire.

Illinois Mathematics and Science Academy (IMSA) "Titan Robotics"

https://titanrobotics2022.com/
https://www.facebook.com/TitanRobotics2022/
https://www.instagram.com/titanrobotics2022/?hl=en

First Robotics Competition team (FRC - big robots and team size) And
First Tech Challenge Team (FTC - small robots \& team size)

- Established Fall 2006
- 2007 Inaugural Competition Season
- 2-3 competitions per year based on budget and fundraising

Sponsors:

Direct dollars and In-Kind

철
 UNIVERSITY

DS SOLIDWORKS

Student Leadership Development

The Organizational Structure

Titans teaching Titans

- Finance subteam
- Student led
- Budgeting \& Ordering
- Donations \& Requests
- Travel Planning \$\$

FIRST Team 2022: Titan Robotics
September 22, 2022
Want to learn about how FRC Titan Robotics finances our 20 thousand dollar robot as well as overnight competition trips and team dinners? Then swing by room E121 today from 4:30 to $5: 15 \mathrm{pm}$ to take part in the Finance subteam's lesson! \#FRC \#rapidreact \#FirstRobotics \#FRC2022 \#FTC

Titans teaching Titans

- Operations subteam
- Student led
- Education \& Outreach
- Social Media
- Relationships

FIRST Team 2022: Titan Robotics
September 14, 2022 - ©
Interested in learning about connecting with local communities to spread STEM opportunities?
Then come to FRC's educational seminar on Outreach to get involved with Titan Robotics' Operations Team for future application news! (No experience needed) We'll be teaching in E121 (Blue Room) from 4:30pm to $5: 15 \mathrm{pm}$, so come right after 8th mod! If you have any questions on the material or Operations team as a whole, then contact titanrobotics2022@imsa.edu. \#FTC
\#FirstRobotics \#rapidreact \#FRC2022

Statewide Frameworks \& Resources

Team-Based Challenge

INDIVIDUAL PLAN

College and Career Pathway Endorsement Framework

Each student completing an endorsement must have an individualized plan, which includes college planning linked to early understanding of career goals, financial aid, resume, and personal statement.

PROFESSIONAL LEARNING

Awareness, exploration, and preparation activities that provide opportunities for students to interact with adults in their workplace

9th \| 10th	11th \| 12th
At least 2 career exploration activities or 1 intensive experience	60 cumulative hours of paid or credit supervised career development experience with a professional skills assessment
At least 2 team-based challenges with adult mentorin	

\uparrow
Through these experiences, a student gains essential employability and technical competencies in their identified sector.
\downarrow

CAREER-FOCUSED INSTRUCTIONAL SEQUENCE

Two years of secondary coursework, or equivalent competencies, that articulate to a postsecondary

ACADEMIC READINESS

Ready for non-remedial coursework in reading and math by high school graduation through criteria defined by district and local community college

$\underline{\underline{v}} \underline{\underline{L}}$ EdSystems

Work-Based Learning Continuum

Components of a Team-Based Challenge

- Authentic problem or challenge identified from and/or in collaboration with a community or business partner
- Students interact in a meaningful way with an adult mentor with expertise in a field related to the Team-Based Challenge that is someone other than their assigned classroom teacher
- Students demonstrate at least one Pathway-specific Technical Competency
- Students demonstrate at least one Cross-Sector Essential Employability Competency (Essential Skill)
- Students work in collaborative groups to solve the problem
- Final product or a final presentation on the outcome of the Team-Based Challenge

Student Experience

- Learning is driven by challenging, open-ended problems with no one "right" answer
- Students work as self-directed, active investigators and problem-solvers in small collaborative groups
- A key problem is identified and a solution is agreed upon and implemented
- Teachers adopt the role as facilitators of learning, guiding the learning process and promoting an environment of inquiry

Statewide Team-based Challenge Resource Bank

IDEAS FOR INSPIRATION: TEAM-BASED CHALLENGES

Manufacturing, Engineering, Technology, and Trades

Plant Safety	Review the history and current practices for plant safety within an organization and suggest recommendations for improvement.
Review Plans/Maps	Inspect plans and/or maps of structures to determine areas in need of troubleshooting and make recommendations for repairs.
Basic Design	Given a design need, create basic detail and assembly drawings for products and equipment that address concepts in layout, print reading, measurement, and quality assurance.
Cost Estimation	Given an authentic need from a customer, research vendors and apply cost estimation principles to create a project timeline and estimate labor and material costs.
Build and Test	Given a need to address, develop and test prototypes as potential solutions - document results as able to build and test prototype for quality control to make recommendations for improvement to prototype.
Prototypes	

- Organized by College and Career Pathway Endorsement Area
- Includes ideas for inspiration and detailed models, along with a template for designing your own
- Resource bank and materials available on I-WIN resource hub

Chicago Public Schools WBL Toolkit for Team-based Challenges

Resources for Design

- Includes checklists, tip and fact sheets, and implementation tools

Team-based Challenge Template

- Template to design and scope out the challenge

Design Questions for Team-based Challenges

- Questions to reflect on as designing

Opportunities

STEM Ambassadors
IMBI

What are Math Badges?

An Alternative Credentialing Mechanism

- Aligned to:
- Illinois Learning Standards (incorporating CCSS)
- Transitional Math competencies
- Stackable
- Translate into credit for:
- Transitional Math
- High school math courses
- Early college credit

How do Math Badges work?

Students can certify learning from a broad range of sources:

- Coursework
- Independent study
- Summer school
- Work-based learning, etc.

Why Math Badges?

Improve math outcomes and advance racial equity through:

- Stronger alignment to math needed for secondary, postsecondary, and career success
- Students demonstrate knowledge not captured by grades
- Opportunities to develop and reinforce math knowledge and skills
- Validate learning outside of the classroom through work-based and other applied learning.
- Customization engages students with math directly related to college and career interests

It's not just about badges!

Badges are a tool to:

- Solve a problem
- Rework a system
- Change a structure
- Transform teaching
- Focus on learning

Pilot Site Use Cases

IMSA	Ridgewood	Round Lake	PSMA	Charleston
Pipeline and Bridge programs	Transitional Math Set Badges students must complete and	Prep Classes (double block)	Math badging will	Geometry in
Historically underrepresented	optional Badges based on career pathway.	Possibly Foundations/single block	be integrated into:	Construction
7th-9th grade students	Students can earn credit in multiple Transitional Math	Bringing math into the 21st century	 Engineering (Rising 10th)	Solidify and demonstrate rigor
Interest and talent in math May come from a	courses (stackable Badges) Core math	Meaningful interdisciplinary connections	Introduction to Engineering (Rising 9th)	Aligning to Algebra I and II
district that lacks opportunities for enrichment	Set Badges students must complete and optional Badges based on career pathway. Students can earn Honors Credit	Math in context Portfolio options Students see themselves as mathematicians	9th) Computer Science (Rising 9th)	

Next Steps

Please let us know if you'd like to continue the conversation here: httos://forms.ale/WyzaBSKZYNMKYhAGA

